Parfum de livres… parfum d’ailleurs

Littérature, forum littéraire : passion, imaginaire, partage et liberté. Ce forum livre l’émotion littéraire. Parlez d’écrivains, du plaisir livres, de littérature : romans, poèmes…ou d’arts…
 
AccueilAccueil  RechercherRechercher  S'enregistrerS'enregistrer  Connexion  

Partagez
 

 Personne n'est jamais assez fort pour ce calcul

Aller en bas 
Aller à la page : 1, 2  Suivant
AuteurMessage
HamsterKiller
Main aguerrie
HamsterKiller

Messages : 544
Inscription le : 25/10/2013
Age : 38
Localisation : Tours

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 15:11

[le pavé, le pavé !]



Envie d’ouvrir sur un sujet qui me turlupine, pas trop clair sur mes intentions, qui m’intrigue et me fascine. A notre époque de science, d’information, de conjecture en tout sens, de pensée formelle (comme les gens qui écrivent « cuisine » sur le mur de leur cuisine oO), de la pensé occidentale, explicative, théorique, analytique (je m’emballe un peu), j’aime me confronter à ce petit problème qui je trouve se révèle amusant. On peut le voir comme un jeu, et aussi comme une limite frontière au formalisme. Il semblerait que la nature, bien faite,  ne permette pas au langage (formel) de tout définir de façon claire et précise, tout du moins dans le cadre de cette « pensée occidentale et bientôt mondiale » de ceux qui aiment écrire cuisine dans leur cuisine. (En vérité, ça m’amuse plus que ça m’effraie, mais je trouve ça bizarre d’écrire cuisine sur les murs de sa cuisine, ça fait étiquette fonctionnelle définissant l’utilité du lieu et que cela serait "plus" que les ustensiles en présence et les corps qui remuent dedans pour s’en servir. On dirait qu’avec cuisine écrit sur le mur, « tout est dit » alors qu’en fait « rien n’est fait » - Bon peut être aussi que les amateurs de mots et de polices trouvent ça beau, ou cool, et que c’est moi du coup qui "analyse" et tourne en rond un peu trop oO )

Donc voilà, j’ai envie de parler de cette chose (le problème du castor affairé,) qui présente quelque chose de parfaitement défini mais non calculable. En somme une cuisine, mais sauf que là, d’une façon remarquable, personne n’arrivera jamais à écrire cuisine sur le mur pour dire : Ceci est une cuisine. Ceci est une cuisine. Ceci est une cuisine. Ceci est ça.

Cadre du problème et ustensile :


Commençons par prendre un ruban de papier, découpé en cases identiques  (autant que l’on veut). Prenons un alphabet, c'est-à-dire un ensemble de symboles, composé de seulement deux symboles, disons « 0 » et « 1 » dans notre cas précis du problème. Dotons-nous d’une tête de lecture/écriture capable de parcourir le ruban case par case (qu’on aura initialisé par un zéros dans chacune des cases), dans les deux sens, lire et écrire dans une case et seulement une case à la fois, et enfin permettons nous de donner des instructions à cette machine. (car elle ne vas pas parcourir/lire/écrire le ruban comme elle veut, c’est nous qui allons lui dire comment parcourir ce ruban)

Pour donner des instructions, il nous faut un état à étiqueter à la tête (on pourrait appeler les états  Cuisine, Salle de bain, chambre, chiotte, mais pour des raisons de simplicité et pour faire plus sérieux, nous les appellerons état « 1 » état « 2 », etc etc. )

Petit schéma représentatif :
(marrant la forme de la première image)
Personne n'est jamais assez fort pour ce calcul Machine-de-turing

Personne n'est jamais assez fort pour ce calcul Tm3

Exemple tout de suite : disons qu’initialement, la tête est dans l’état « 1 » et sur la case numérotée  1 du ruban ( rappel :  toutes les cases dans notre cas précis sont initialisées avec 0, la première case aussi contient donc  0)
On peut définir par exemple l’instruction suivante  lorsque la tête est dans l’état 1 (c'est-à-dire l’instruction que doit suivre la tête si elle est dans l’état 1):
Etat 1 :
(par exemple)
- si je lis un « 0 », j’écris un « 1 » dans la case ou je suis, je me déplace a droite, et je passe dans l’état 2
- si je lis un « 1 », j’écris un « 1 » dans la case ou je suis, je me déplace pas, et je passe dans l’état 3
(les instruction ont toute cette forme : si je lis « a », j’écris « b » (b peut etre égale a a), je me déplace a Gauche ou droite ou  pas, et je passe dans l’état n (ou STOP pour finir le travail). Ça peut se formaliser   par exemple dans notre cas d’instruction sur l’état 1 par :
Etat 1 :
0-1-D-2
1-1-X-3

Vu qu’il n’y a que deux symbole possible, la tête sait toujours quoi faire si elle se trouve dans l’état 1 (elle sait ce qu’elle doit faire si elle lit un « 0 », ou si elle lit un « 1 ». L’on peut voir qu’à la fin de l’instruction, la tête passe dans l’état 2 ou 3 selon ce qu’il y avait dans la case initialement (au début il y a zéros mais en activant la mécanique des instructions,  rien ne nous dit qu’on ne va pas un jour être dans l’état 1 et lire un 1 sur une autre case). Il faut donc définir une instruction pour les Etat 2 et 3. Si les instructions des états 2 et 3 ramènent vers les états 1,2,3 alors la machine est parfaitement définie et saura toujours quoi faire.

Etat 2 :
(par exemple)
Si je lis un zéro, j’écris 1, je vais à gauche, je passe dans l’état 1 (0-1-G-1)
Si je lis « 1 », j’écris 1, je vais a droite, je reste dans l’état 2 (1-1D-2)
Etat 3
(par exemple)
0-1-G-2
1-1-D-STOP


Cette machine, dotée d’instructions et donc capable d’écrire des « 1 » sur des zéros, ou des « 0 » sur des « 1 » ou des « 1 » sur des « 1 » ou des « 1 » sur des « 0 », et la manière dont elle va faire cela (déplacement, changement d’état) est parfaitement définie par le jeu d’instruction. Quelque soit l’état dans lequel se trouve la tête, elle sait ce qu’elle doit faire en fonction de ce qu’elle lit sur la case où elle se trouve et cela de façon déterministe. Cette machine est un cas particulier qui se définit de façon plus générale par Machine de Turing. Ici on peut parler de machine de Turing binaire (car l’alphabet est composé de 0 et 1) à 3 états (car on a 3 états + l’état final STOP).

(La machine de Turing est un modèle mathématique inventé par Turing pour tenter de définir la notion de calculable – Calculable au sens large, c'est-à-dire capable de transformer une information formelle en une autre. C’est aussi le modèle conceptuel de l’ordinateur. Tout ce que sait faire un ordinateur, une machine de Turing sait le faire, pour peu qu’on la dote du bon jeu d’instructions – Créer le jeu d’instructions, c’est ce qu’on appelle programmer)

Cas de l’arrêt de la machine : Une remarque sur l’arrêt de la machine. Imaginons la machine de Turing binaire a 1 état, initialisé avec un ruban remplit de zéros, avec l’instruction suivante :
Etat 1 :
Si je lis 0, j’écris 1, je vais a droite, et je reste dans l’état 1 (0-1-D-1)
Si je lis 1, j’éecris1, je vais a gauche, je passe dans l’état STOP.(1-1-G-STOP)
Sur un ruban remplit de zéro, cette machine ne va jamais s’arrêter et remplir le ruban d’une infinité de 1. Elle va lire un zéro, écrire un dans la case, aller à droite et rester dans l’état 1. Sur la nouvelle case, elle lit un zéro, écris 1, va à droite et reste dans l’état 1, etc etc etc… elle n’atteindra jamais l’état STOP.
Dans ce cas on dit simplement que la machine ne s’arrête pas. Dans le cas contraire on dit qu’elle s’arrête.


Problème du castor Affairé : Soit une machine de Turing binaire à N états avec un ruban  infini entièrement initialisé avec des zéros, on appelle Sigma(N) la fonction qui a N associe le nombre de 1 maximale que la machine peut écrire avec le meilleur jeu d’instruction possible sur ces N états mais qui s’arrête au bout d’un certain temps (c'est-à-dire que la machine atteint un jour l’état STOP, donc exit les instructions qui font que la machine ne s’arrête jamais et n’atteigne pas l’état STOP.)

Ben voilà, on vient de tomber sur un problème où personne ne sera jamais assez fort pour ce calcul. Personne ne pourra donner l’expression de cette fonction sigma, c’est démontré. La fonction sigma est démontré incalculable, pourtant ce chiffre existe bel et bien pour chaque N. chaque sigma(n) est un nombre entier < infini (la machine s’arrête donc elle peut pas en écrire ad vita eternam)

On connait sigma(1) c’est 1. Sigma(2)=4, sigma(3)=6 et sigma(4)=13. Pour sigma(5) on sait que ce nombre est supérieur à 4 098 et pour sigma(6) on sait qu’il est supérieur à 3,5×10^18 267  ce qui est au passage un nombre monstrueux battant largement le nombre d’atomes dans l’univers (qui lui est de l’ordre de 10*10^80 il me semble…).

Pire on sait qu’aucun langage formel n'est à même de décrire cette fonction quelles que soient les astuces symboliques pouvant décrire les nombres. (C’est-à-dire qu’il n’existe même pas un formalisme de récurrence entre les sigmas(n) eux même). C’est une fonction plus croissante que n’importe quelle fonction croissante que l’on peut écrire mathématiquement. Bref c’est incalculable.

Et ben moi, ça me broute le chou de savoir que cette fonction est parfaitement définie mais quelle  n’est pas exprimable par aucun moyen que ce soit. Et en même temps je me dis que si un truc aussi simple (dans le sens élémentaire : des histoires de cases et de jeux d’instruction qu’un enfant de 8 ans pourrait effectuer avec un papier et une feuille) échappe à  la raison ben c’est cool, y’a un coté rassurant  non ?

Tout n'est pas mesurable, pas quantifiable et donc pas explicable dans le sens qui me parait aujourd’hui être l'unique valeur mise en avant. Le scientifiquement démontré, le prouvé, le raisonnement, le déterminisme, l'assurance de maîtriser notre compréhension de tout. Ceci n'est pas réellement une dent contre le formalisme, j'adore ça car il est arrivé à un point où il s'interroge lui même et sur ses limites frontière, il les met en évidence par ses propres moyens, avec sa force dure comme le diamant qu'on lui connaît et qui est réelle. Cette frontière là est fascinante je trouve.

Bien sûr cela peut sembler très abstrait une telle machine. Pourtant depuis les années 50 cette machine abstraite et passée dans le concret avec l'ordinateur et autres cas, et par là même, les propriétés qui s'en dégagent viennent d’être injectées du pur symbolisme vers un constat de la matière. Les propriétés des machines de turing et leur limite sur  leur compréhension sont les même que les propriétés de n'importe quelle machine effectuant des calculs et constituée de matière.

Il n'est pas rare dans la théorie de la calculabilité d'invoquer un "Oracle" dans certaine démonstration ou résultat, une entité symbolique qui connaît la réponse que l'on ne pourra jamais atteindre nous (car cette réponse existe et est donc définie mais on ne la connaît pas, ou si on la connaît, c'est qu'on nous l'aura donnée ou qu'on l'aura "devinée" puisque dans le cas de non-calculable, aucune expression formelle ne sera suceptible de décrire la façon dont on l'obtient).

Je me demande quel rapport entretient L'oracle à la matière, au monde tangible que nous soupçonnons.


Dernière édition par HamsterKiller le Ven 19 Sep 2014 - 20:35, édité 2 fois
Revenir en haut Aller en bas
Marko
Faune frénéclectique
Marko

Messages : 17930
Inscription le : 23/08/2008
Age : 51
Localisation : Lille

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 16:19

Finalement Cuisine écrit sur les murs de la cuisine c'est plus reposant rire

_________________
"Ceux qui croient posséder une clef transforment le monde en serrures. Ils s'excitent, ils interprètent les textes, les films, les gens. Ils colonisent la vie des autres. Les déchiffreurs devraient se calmer, juste décrire, tenter de voir, plutôt que de projeter du sens et de s'approprier l'obscur, plutôt que d'imposer la violence blafarde de l'univers. Dire comment, pas pourquoi."
Francois Noudelmann (Tombeaux: d'après La Mer de la Fertilité de Mishima).
Revenir en haut Aller en bas
Chymère
Sage de la littérature
Chymère

Messages : 2001
Inscription le : 21/07/2013
Age : 36
Localisation : Dijon

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 16:22

J'aime pas la cuisine et j'aime pas les maths. Jsuis mal pour répondre à ton casse-tête... bounce






PS : Par contre, je ne risque pas de manquer The Imitation Game... Cool
Revenir en haut Aller en bas
Maryvonne
Zen littéraire
Maryvonne

Messages : 4259
Inscription le : 03/08/2009
Localisation : oui, merci.

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 16:25

(moi, le début me fait mouiller le slip, mais je dois filer)
(mais je reviendrais)
Revenir en haut Aller en bas
HamsterKiller
Main aguerrie
HamsterKiller

Messages : 544
Inscription le : 25/10/2013
Age : 38
Localisation : Tours

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 16:47

Chymère a écrit:
J'aime pas la cuisine et j'aime pas les maths. Jsuis mal pour répondre à ton casse-tête... bounce

PS : Par contre, je ne risque pas de manquer The Imitation Game... Cool

Un film sur Turing ! J'crois bien que je vais aller voir ça sous peu !! (merci pour l'info). ça fera deux film en un mois oO. Un records depuis de nombreuse année !

Maryvone a écrit:
(moi, le début me fait mouiller le slip, mais je dois filer)
(mais je reviendrais)

swing

(T'es quand même culottée !!!)
Revenir en haut Aller en bas
églantine
Zen littéraire
églantine

Messages : 6498
Inscription le : 15/01/2013
Age : 54
Localisation : Peu importe

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 17:13

Désolée Hamster , les mots calcul et problème me font fuir , en plus avec des dessins théoriques et des chiffres encore , et le mot case , et les mots droite et gauche qui réveillent mes problèmes de latéralisation : au secours je ne peux lire ..... affraid
   encouragement  dans ton turlupinage ! Et bravo à ceux qui suivent !  bonjour
Abeille

_________________
«Le chemin du milieu, c'est le seul qui ne mène pas à Rome»  
Schonberg:  
Revenir en haut Aller en bas
GrandGousierGuerin
Sage de la littérature
GrandGousierGuerin

Messages : 2669
Inscription le : 02/03/2013

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 17:31

Personne n'est jamais assez fort pour ce calcul Busy-beaver-turing-machine
Une solution ?
Personne n'est jamais assez fort pour ce calcul Keep-calm-and-eat-beaver
Personne n'est jamais assez fort pour ce calcul PS_0395_EAT_BEAVER_RK

Et pour poursuivre ta réflexion sur les notions de calculabilité, la thèse de Church que je vais parcourir : lessive des cellules plus assez grises Very Happy
Revenir en haut Aller en bas
http://www.girlsgogames.fr/jeu/lapine_dhiver.html
marc et cie
Main aguerrie
marc et cie

Messages : 479
Inscription le : 01/12/2013
Age : 53
Localisation : lyon

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 18:42

moi je mange dans ma salle à manger. Le problème est réglé. Par contre, j'ai mis un étiquette " salle à manger" dans ma salle à manger. Je cois que je vais l'enlever.
Revenir en haut Aller en bas
http://contespourleslutins.blogspot.fr/
GrandGousierGuerin
Sage de la littérature
GrandGousierGuerin

Messages : 2669
Inscription le : 02/03/2013

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 18:45

marc et cie a écrit:
moi je mange dans ma salle à manger. Le problème est réglé. Par contre, j'ai mis un étiquette " salle à manger" dans ma salle à manger. Je cois que je vais l'enlever.

Moi c'est plus grave, j'ai une étiquette à mon nom sur mon slip affraid
Revenir en haut Aller en bas
http://www.girlsgogames.fr/jeu/lapine_dhiver.html
marc et cie
Main aguerrie
marc et cie

Messages : 479
Inscription le : 01/12/2013
Age : 53
Localisation : lyon

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 18:48

GrandGousierGuerin a écrit:
marc et cie a écrit:
moi je mange dans ma salle à manger. Le problème est réglé. Par contre, j'ai mis un étiquette " salle à manger" dans ma salle à manger. Je cois que je vais l'enlever.

Moi c'est plus grave, j'ai une étiquette à mon nom sur mon slip affraid
si c'est vraiment le tien, y a pas de soucis
Revenir en haut Aller en bas
http://contespourleslutins.blogspot.fr/
GrandGousierGuerin
Sage de la littérature
GrandGousierGuerin

Messages : 2669
Inscription le : 02/03/2013

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 18:54

marc et cie a écrit:
GrandGousierGuerin a écrit:
marc et cie a écrit:
moi je mange dans ma salle à manger. Le problème est réglé. Par contre, j'ai mis un étiquette " salle à manger" dans ma salle à manger. Je cois que je vais l'enlever.

Moi c'est plus grave, j'ai une étiquette à mon nom sur mon slip affraid
si c'est vraiment le tien, y a pas de soucis

Qui sait ... Ce maudit castor affairé a la possibilité de lire et écrire ...
Revenir en haut Aller en bas
http://www.girlsgogames.fr/jeu/lapine_dhiver.html
HamsterKiller
Main aguerrie
HamsterKiller

Messages : 544
Inscription le : 25/10/2013
Age : 38
Localisation : Tours

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 20:28

Un castor dans le slip, faut oser !
Revenir en haut Aller en bas
animal
Tête de Peluche
animal

Messages : 31548
Inscription le : 12/05/2007
Age : 38
Localisation : Tours

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 20:49

Citation :
on appelle Sigma(N) la fonction qui a N associe le nombre de 1 maximale que la machine peut écrire avec le meilleur jeu d’instruction possible sur ces N états mais qui s’arrête au bout d’un certain temps (c'est-à-dire que la machine atteint un jour l’état STOP, donc exit les instructions qui font que la machine ne s’arrête jamais et n’atteigne pas l’état STOP.)

Ben voilà, on vient de tomber sur un problème où personne ne sera jamais assez fort pour ce calcul. Personne ne pourra donner l’expression de cette fonction sigma, c’est démontré. La fonction sigma est démontré incalculable, pourtant ce chiffre existe bel et bien pour chaque N. chaque sigma(n) est un nombre entier < infini (la machine s’arrête donc elle peut pas en écrire ad vita eternam)

On connait sigma(1) c’est 1. Sigma(2)=4, sigma(3)=6 et sigma(4)=13. Pour sigma(5) on sait que ce nombre est supérieur à 4 098 et pour sigma(6) on sait qu’il est supérieur à 3,5×1018 267 ce qui est au passage un nombre monstrueux battant largement le nombre d’atomes dans l’univers (qui lui est de l’ordre de 10*10^80 il me semble…).
ça veut dire qu'on calcule le "moins bon jeu d'instructions possibles" comme limite inférieure ? il y a un exposant qui a sauté pour sigma(6) ?

il faut que je continue à digérer le problème (lu en diagonale en début d'aprem et relu ce soir... )

_________________
Je suis snob, j'ai lu un Mickey Spillane.
Revenir en haut Aller en bas
HamsterKiller
Main aguerrie
HamsterKiller

Messages : 544
Inscription le : 25/10/2013
Age : 38
Localisation : Tours

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 21:28

Animal a écrit:
ça veut dire qu'on calcule le "moins bon jeu d'instructions possibles" comme limite inférieure

En fait , tout jeu d'instruction sur N état  qui s'arrete au bout d'un moment donne une borne inférieure de sigma(N).

Vu al taille de sigma(4) (soit 4098), y'a moyen qu'un type ce soit amusé a générer des instructions, de les simuler sur un ordinateur et la meilleurs a donné ce résultat a ce jours. Pour sigma(5), vu la taille phénomenal du nombre en admettant que la simulation écrivent mille milliard de un a la seconde Il faudrait des milliard de millard de millard..... (plein de fois) l'age de l'univers pour sortir ce nombre en tant de calcul. Vu que l'idée est de tester plein de combinaison d'instruction dans cette méthode, je pense que c'est par des moyen théorique que ce chiffre a pu etre annoncé. (J'ai corrigé l'erreur de puissance en effet, le caractère n'avait pas été pris). Mais j'ai jamais été voir comment ce nombre avait pu etre sortis.

On peut se dire qu'une solution formel aux problème du castor serait d'écrire un algorithme qui teste tout les jeux d'instruction de sigma(N), (c'est a dire les génère puis les test) et donne a la fin la meilleurs. Pratiquement c'est inconcevable (car on 'la vue des sigma(13) les temps de calcul pour un seul jeu d'instruction peuvent déjà peter tout les compteur) mais formellement ce pourrait etre une solution car un algorithme se décrit dans un langage formelle.

Le problème dans notre cas est comme on l'a vue que certain jeux d'instruction font que l'execution de la mchine de Turing ne s'arrete jamais. Ainsi l'algorithme brutale de tester toutes les combinaison de jeux d'instruction va rencontré (dès sigma(1) comme dans l'exemple du cas de l'arret plus haut) des jeux d'instruction sur lesquelles l'algo ne s'arretes pas. Il faudrait alors fournir a cet algorithme un moyen de détecté les jeux d'instruction qui boucle indéfiniment

-> Ce problème (détecté les algo qui boucle) est appelé problème de l'arret. Ce problème a été démontré incalculable également.
Revenir en haut Aller en bas
animal
Tête de Peluche
animal

Messages : 31548
Inscription le : 12/05/2007
Age : 38
Localisation : Tours

Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul EmptyVen 19 Sep 2014 - 21:42

et des estimations pour des "tailles de ruban" finies ?


_________________
Je suis snob, j'ai lu un Mickey Spillane.
Revenir en haut Aller en bas
Contenu sponsorisé




Personne n'est jamais assez fort pour ce calcul Empty
MessageSujet: Re: Personne n'est jamais assez fort pour ce calcul   Personne n'est jamais assez fort pour ce calcul Empty

Revenir en haut Aller en bas
 
Personne n'est jamais assez fort pour ce calcul
Revenir en haut 
Page 1 sur 2Aller à la page : 1, 2  Suivant
 Sujets similaires
-
» Le summum de l'inimaginable, aucun mot assez fort pour decrire
» pour le calcul de la rétro , le .38 et .48 cumulatif?
» Aide pour un calcul
» Fards mattes pour un petit smokey/fumé assez neutre..A vos claviers!
» Je t'aime, pour le meilleur et pour le pire

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Parfum de livres… parfum d’ailleurs :: Un moment de détente… :: L'humain, la société, la nature...-
Sauter vers: